407 research outputs found

    Geochemical characteristics of back-arc basin lower crust and upper mantle at final spreading stage of Shikoku Basin: an example of Mado Megamullion

    Get PDF
    AbstractThis paper explores the evolutional process of back-arc basin (BAB) magma system at final spreading stage of extinct BAB, Shikoku Basin (Philippine Sea) and assesses its tectonic evolution using a newly discovered oceanic core complex, the Mado Megamullion. Bulk and in-situ chemical compositions together with in-situ Pb isotope composition of dolerite, oxide gabbro, gabbro, olivine gabbro, dunite, and peridotite are presented. Compositional ranges and trends of the igneous and peridotitic rocks from the Mado Megamullion are similar to those from the slow- to ultraslow-spreading mid-ocean ridges (MOR). Since the timing of the Mado Megamullion exhumation corresponds to the very end of the Shikoku Basin opening, the magma supply was subdued and highly episodic, leading to extreme magma differentiation to form ferrobasaltic, hydrous magmas. In-situ Pb isotope composition of magmatic brown amphibole in the oxide gabbro is identical to that of depleted source mantle for mid-ocean ridge basalt (MORB). In the context of hydrous BAB magma genesis, the magmatic water was derived solely from the MORB source mantle. The distance from the back-arc spreading center to the arc front increased away through maturing of the Shikoku Basin to cause MORB-like magmatism. After the exhumation of Mado Megamullion along detachment faults, dolerite dikes intruded as a post-spreading magmatism. The final magmatism along with post-spreading Kinan Seamount Chain volcanism were introduced around the extinct back-arc spreading center after the opening of Shikoku Basin by residual mantle upwelling

    Geodynamic Evolution of a Forearc Rift in the Southernmost Mariana Arc

    Get PDF
    The southernmost Mariana forearc stretched to accommodate opening of the Mariana Trough backarc basin in late Neogene time, erupting basalts now exposed in the SE Mariana Forearc Rift (SEMFR) 3.7 – 2.7 Ma ago. Today, SEMFR is a broad zone of extension that formed on hydrated, forearc lithosphere and overlies the shallow subducting slab (slab depth ≤ 30 – 50 km). It comprises NW-SE trending subparallel deeps, 3 - 16 km wide, that can be traced ≥ ~ 30 km from the trench almost to the backarc spreading center, the Malaguana-Gadao Ridge (MGR). While forearcs are usually underlain by serpentinized harzburgites too cold to melt, SEMFR crust is mostly composed of Pliocene, low-K basaltic to basaltic andesite lavas that are compositionally similar to arc lavas and backarc basin (BAB) lavas, and thus defines a forearc region that recently witnessed abundant igneous activity in the form of seafloor spreading. SEMFR igneous rocks have low Na8, Ti8, and Fe8, consistent with extensive melting, at ~ 23 ± 6.6 km depth and 1239 ± 40oC, by adiabatic decompression of depleted asthenospheric mantle metasomatized by slab-derived fluids. Stretching of pre-existing forearc lithosphere allowed BAB-like mantle to flow along SEMFR and melt, forming new oceanic crust. Melts interacted with preexisting forearc lithosphere during ascent. SEMFR is no longer magmatically active and post-magmatic tectonic activity dominates the rift

    Variant PRC1 competes with retinoic acid-related signals to repress Meis2 in the mouse distal forelimb bud

    Get PDF
    10 p.-3 fig.-1 tab.Suppression of Meis genes in the distal limb bud is required for proximal-distal (PD) specification of the forelimb. Polycomb group (PcG) factors play a role in downregulation of retinoic acid (RA)-related signals in the distal forelimb bud, causing Meis repression. It is, however, not known whether downregulation of RA-related signals and PcG-mediated proximal gene repression are functionally linked. Here, we reveal that PcG factors and RA-related signals antagonize each other to polarize Meis2 expression along the PD axis in mouse. Supported by mathematical modeling and simulation, we propose that PcG factors are required to adjust the threshold for RA-related signaling to regulate Meis2 expression. Finally, we show that a variant Polycomb repressive complex 1 (PRC1), incorporating PCGF3 and PCGF5, represses Meis2 expression in the distal limb bud. Taken together, we reveal a previously unknown link between PcG proteins and downregulation of RA-related signals to mediate the phase transition of Meis2 transcriptional status during forelimb patterning.This work was supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT) (23249015 to H.K.), the Japan Agency for Medical Research and Development (AMED) (JP18gm0510016 to H.K. and T.K.), the Special Postdoctoral Researcher Program of RIKEN (to N.Y.-K.), the Regional Innovation Program from MEXT (to T.K.) and the Cross-ministerial Strategic Innovation Promotion Program (SIP) from Cabinet Office, Government of Japan (to T.K. and H.K.).Peer reviewe

    Vα14 NK T cell–triggered IFN-γ production by Gr-1+CD11b+ cells mediates early graft loss of syngeneic transplanted islets

    Get PDF
    Pancreatic islet transplantation is a highly promising approach for the treatment of insulin-dependent diabetes mellitus. However, the procedure remains experimental for several reasons, including its low efficiency caused by the early graft loss of transplanted islets. We demonstrate that Gr-1+CD11b+ cells generated by transplantation and their IFN-γ production triggered by Vα14 NKT cells are an essential component and a major cause of early graft loss of pancreatic islet transplants. Gr-1+CD11b+ cells from Vα14 NKT cell–deficient (Jα281−/−) mice failed to produce IFN-γ, resulting in efficient islet graft acceptance. Early graft loss was successfully prevented through the repeated administration of α-galactosylceramide, a specific ligand for Vα14 NKT cells, resulting in dramatically reduced IFN-γ production by Gr-1+CD11b+ cells, as well as Vα14 NKT cells. Our study elucidates, for the first time, the crucial role of Gr-1+CD11b+ cells and the IFN-γ they produce in islet graft rejection and suggests a novel approach to improving transplantation efficiency through the modulation of Vα14 NKT cell function

    Down-regulation of CD5 expression on activated CD8+ T cells in familial hemophagocytic lymphohistiocytosis with perforin gene mutations

    Get PDF
    Hemophagocytic lymphohistiocytosis (HLH) is characterized by uncontrolled activation of T cells and macrophages with overproduction of cytokines. Familial HLH type 2 (FHL2) is the most common form of primary HLH and is caused by mutations in PRF1. We have recently described a significant increase in the subpopulation of CD8+ T cells with clonal expansion and CD5 down-regulation in Epstein-Barr virus associated-HLH, which represented a valuable tool for its diagnosis. However, this unusual phenotype of CD8+ T cells has not been investigated fully in patients with FHL2. We performed immunophenotypic analysis of peripheral blood and measured serum pro-inflammatory cytokines in five patients with FHL2. All patients showed significantly increased subpopulations of activated CD8+ T cells with down-regulation of CD5, which were negligible among normal controls. Analysis of T-cell receptor Vβ repertoire suggested the reactive and oligoclonal expansion of these cells. The proportion of the subset declined after successful treatment concomitant with reduction in the serum levels of cytokines in all patients except one who continued to have a high proportion of the subset and died. These findings suggest that down-regulation of CD5 on activated CD8+ T cells may serve as a useful marker of dysregulated T cell activation and proliferation in FHL2. © 2013 American Society for Histocompatibility and Immunogenetics
    corecore